If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26+x^2=64
We move all terms to the left:
26+x^2-(64)=0
We add all the numbers together, and all the variables
x^2-38=0
a = 1; b = 0; c = -38;
Δ = b2-4ac
Δ = 02-4·1·(-38)
Δ = 152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{152}=\sqrt{4*38}=\sqrt{4}*\sqrt{38}=2\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{38}}{2*1}=\frac{0-2\sqrt{38}}{2} =-\frac{2\sqrt{38}}{2} =-\sqrt{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{38}}{2*1}=\frac{0+2\sqrt{38}}{2} =\frac{2\sqrt{38}}{2} =\sqrt{38} $
| 22=d/2 | | 1/2x+3=1/8 | | 90+50+c=180 | | 90+48+c=180 | | -6/7x+18=-12 | | x^2+16^2=9^2 | | x+(x*0.21)-(x*0.15)=8331.60 | | 7(w-4)-3=-7(-4w+5)-7w | | 2/(z+5)=12 | | 4z-11=47 | | -6/7x+24=-24 | | 16^2x+3=4^x-5 | | 4(2n+4)=6(9n+8)+2 | | 4(7x+18)1/2=4x | | 7(5x+6)=35x+42 | | 3+3c=18 | | (x)-6=-14 | | 10x+11=9x+5 | | 2x-7x=3 | | 55=j+11 | | 4(p-85)=32 | | 23+4y-7=16y-12-5y | | 15/h=9 | | y+-36=24 | | 3u+4(u+4)=33 | | 10p=70 | | 3^(5x+1)=27 | | 3x+5-2x+1=13 | | 26=4u-10 | | 11^10x+3=64 | | 2x+75+12x=180 | | 10x+10x/3+5x=245 |